InventorCAM 2013

Parallel Computing

A major new capability in InventorCAM 2013: Parallel Computing

- User can start calculation of an operation or several operations and, while it is calculating, he can in parallel continue to define and calculate additional operations
- User can start parallel simulation and, while it is simulating in the background, he can in parallel continue to work defining additional operations
- User can start G-Code generation and, while it is generating G-code, he can in parallel continue to work defining additional operations

Parallel Computing - LOCAL or REMOTE

- LOCAL: Parallel computing on User Computer, using the power of multi-threading on multi-core CPUs
- REMOTE: Parallel computing on External computer on the Network

Note: If you choose the network option, the logged in user account in the local and network computers must be defined on both computers.

Parallel Computing - LOCAL or REMOTE

Software Licensing

InventorCAM 2013 provides software licensing, in addition to the standard hardware dongle licensing.

Advantages:

- For companies demanding a network software license instead of network hardware dongle
- Used instead of hardware dongle for customers who want a 30-day evaluation of the software

Controller ID

- First stage on the way to make machine definition in one file - *.VMID - Probe cycles and MCO cycles are moved to *.VMID already in SC2012SP2

MCO cycles

Use it in any CAM-part easily

Machine Setup

- Definition of fixture, MACs shiftings in one place
- Conection between fixture, MAC and Sub-Machine

MCO: Movement definition styles

- Definition of device movements in Part CoordSys
- Definition of device movement by axis value (according to Device CoordSys)

CoordSys: Easier CoordSys Edit

- Partly highlighted Existing Coordinate System

Integration with G-code simulators

Possibility to use for Gcode simulation the following simulators:
 - VERICUT
 - IMSVerify
 - DMG Virtual Machine
 - G-Navi
 Send all needed data by one mouse click

Color the CAM-tree

General: New and Edit geometry

- No need to delete previous geometry from interface to define new one

General: Associative cell color

- Customize the color of Associative field in interface (red was confusing)

General: Show tool from all operations

- Show 3D tool in separate window

Template：Keep template name


```
O...OCAM-Part (4THAXIS_WITH_OFFSET)
```

妈 Machine (integrex200-IV)
(7) CoordSys Manager
(4) Stock (stock123333)
(6) Target (target1)
Settings
目 Tool
Machining Process
(7) Geometries
(H) Fixtures
$\square \square \square$ Operations

- - fixture
皃阳 B_ax_MAIN
… MAC 1 (2-Position)
田 \square 和 P_{-}contour_1
- 最 B_ax_BACK
-…(-) MAC 1 (2-Position)
\pm * OuterContour
－Use template name as name of operation created from this template

Transform: $4 x$ transform with offset

- Possibility to add offset along 4th axis during transformation

Impressive graphic interface

New 3D illustrations for every parameter = easier learning and activation of software

2.5D operations: technology on TABs

- Split technology page of 2.5D milling operations to TABs
- More structured parameters placing

Profile geometry: Silhouette

- Automatic creation of silhouette around defined model

Profile geometry: Show tool at the end also

- Under Modify geometry we can wee tool radius at the end and at the beginning of geometry
- Useful for complex geometries

Profile geometry: Take depth from $1^{\text {st }}$ selected item of

geometry

- If select new geometry - get depth from 1st selected entity of geometry

Face milling: Angle of cutting in "One pass"

- Angle is added to One pass in Face milling

Profile: Ignore geometry self-intersection

- Possible to use open self-intersecting geometry with compensation without reducing toolpath

Draft wall angle: Bottom to top

- New option - bottom to top in Draft angle in Profile

2.5D Threading: Roughing definition improvement

InventorCAM 2012

- Only multi-step Roughing is available

InventorCAM 2013

- Enable one step Roughing, in addition to multi-step Roughing (clear offset option)

2.5D Threading: Minimize air cutting

Threading: Variable step over (\%)

- Up to 3 different depth on different rough cutting steps

Drilling: up to 24 cycles available

- Amount of Drill cycles was increased up to 24

Drilling: Sorting options interface improvement

InventorCAM 2012
Sequence of drill positions

InventorCAM 2013

Sorting

(O) Default

- Shortest distance

O Advance

Reverse direction

- Now all sorting options are on the screen
- Only useful options left ("Line" option is converted to Default, and deleted from options)
- Changes appear in 2.5D drill, Threading, 3D Drill, Multi-axes drill, Drill recognition

Toolbox: 4 nubs cycle

- In case of big through holes - If user wants to break out the material, instead of machining it with simple pocket.

Toolbox: 1 side open slot

- For cutting one-side open slots with spiral cuts

Toolbox: Flatten surface on corner

- For big chamfers and corner faces machining

Toolbox: Zig-zag slot operation

- Slot machining with zig-zag ramping

Toolbox: Simple boss

- Slot machining with zig-zag ramping

Toolbox: Spiral pocket

- Slot machining with zig-zag ramping

Toolbox: Compensation and Finish

- Now Compensation and Finish options are almost in all Toolbox operations

Drill Recognition: Champher/Spot

- Define champher/Spot drill depth = Drilling depth will be calculated automatically

2D/3D Engraving operation

- Separation to 2D and 3D Engraving
- Improvement in interface - easier to understand the, meaning on parameters

2D/3D Engraving: Middle line toopath

Geometry

Machining

- Engraving only center line of multi-line text geometry

HSR: Edit passes by selected operations

- 3 new options of Updated stock: Automatic, by *.FCT file, by Selected operations

HSR: New operation - Rib machining

- For very thin walls made from exotic materials
- Rough+ semi-finish are combined in one operation, level by level.

HSM: New Operation - Hybrid Constant Z

- New Finishing strategy combining Constant Z operation and 3D pocketing with 3D constant stepover, where needed

HSM/HSR: User-defined cut levels

- Cut ONLY on specified Z levels, instead of cut on every step down

HSM/HSR: Stay down within

Stay down within: 1

- Minimize amount of vertical tool moves
- The smaller this value - the more retract moves

Stay down within: 10

HSM/HSR: Simple ordering and optimize lead position

- \quad Simple ordering between cutting passes - minimize length of connections between passes

- Optimize Lead position- find the point to minimize length of Lead-In movement

HSM/HSR: User-defined Facet tolerance

- Enable the user to define the facet tolerance in any HSM operation - in previous versions this was automatically according to Passes tolerance

Convert From HSS/HSM: New tilting options

- Advanced options of Tilting tool away with max. angle : 3 axis to 5 axis conversion

Advanced button in HSS and $5 x$ sim. operations

Swarf Machining - new sim 5 x operation

- Easy definition of geometry
- Automatic definition of tool axis control

$5 x$ sim: Projection strategies

- 3 new strategies of Projection technology
- Possibility to define direction of passes by $\mathrm{X} / \mathrm{Y} / \mathrm{Z}$ axis or user-sefined direction

5x. Sim: Retract plane definition

Plane definition by:

- Normal vector (by 2 points)
- Plane

Tooltable: composite tools

Composite Tools

Ext. Groove

Int.Groove

Int. Thread

- Composite turning, boring, grooving and threading tools

Tooltable: Grooving composite tools

- Internal and External grooving tools
- Square and Round inserts

Tooltable: Threading composite tools

- Option to use standarg thread type tables
- Triangle and rectangle inserts

Tooltable: Use only insert

- Define only cutting part of the tool - tool body can be deined as STL holder

Turning: Work without fixture

- If there is target defined - fixture is not needed anymore for turning
- If there is NO target - fixture is needed
- Machine without fixture and without traget - impossible

Turning: Balanced roughing

- Possibility to cut with 2 tools at the same time
- Simultaneous balanced turning
- Option to define trailing distance
- Twice faster machining on machines with 2 turrets

Turning: Manual turning

- Define toolpath by sketch
- Full control on tool movements

Turning: Approach/Retract in drilling

- Control approach and retract motions in turning drilling operations

Turning: Reduce toolpath on X axis

Full toolpath

Limited toolpath

- Available for Rough and Finish

Turning: Adaptive step down

- Add additional passes to clean „flat" areas

Turning: Additional grooving paths

- Grooving tool in turning operation = Additional grooving passes could be optionally added

Turning: Separate Compensation for Rough and Finish

- Separate compensation for Rough and Finish in turning

Turning: Improvement of simulation

- Scroll/Zoom/Pan by mouse
- Colored tools
- Better visualization during actions (Scroll/Zoom/Pan)

Turret Synchronization

- Easy to use vertical interface
- Color differentiation between tables
- Customizable settings of GUI
- Documentation

Synchronization types:

- Start at the same time
- End at the same time
- Start after previous

The revolution in CNC machining

3D iMachining

3D iMachining with intelligent step-up

3D iMachining

3D iMachining

3D iMachining smart positioning

3D iMachining

3D iMachining smart positioning

3D iMachining

3D iMachining for molds

3D iMachining

File Options Settings Tools

3D iMachining for Prismatic parts

3D iMachining

3D iMachining for complex 3D parts

New Product: SolidProbe

SolidProbe cycles

- Single point X
- Single point Y
- Single point Z
- Angle X
- Angle Y
- Angle Z
- Boss
- Pocket
- Pocket with boss
- Cylinder
- Hole
- Hole with boss
- External arc
- Internal arc
- External corner
- Internal corner
- Possibility to customize cycle usage in Measurement and Home Definition (inside *.VMID file)

Probe Tool

- New Probe tool in tooltable
- Support of Probe tool in all simulations

SolidProbe: Home definition

- Probe cycles support home definition

SolidProbe：Measurement

－Enables measuring the part，during machining
－Includes many cycles of measurement
$\square \square$ Operations

－．．．（1）MAC 1 （1－Position）
\square MACHINE＿CTRL（1）
㞓 UT＿BS
－．．．（7）MAC 3 （2－Position）
田… \square 風 F_{-}contour 1 ．．．T1（2）
－．．．（1）MAC 3 （1－Position）

- 圈 MACHINE＿CTRL＿1（3）
- 局 UT＿MS

ㅂ…（4）MAC 3 （2－Position）

－．．．（1）MAC 3 （1－Position）
－\square 園 MACHINE＿CTRL＿2（6）
－．．．（6）MAC 3 （3－Position）

User-defined parameters in MachineID

- Parameters for each Probe cycle in *.VMID file - Controller Definition page
- Separate GUI and GPP name - for easier localization
- Possibility to activate/deactivate parameter by checkbox

SolidProbe: Technologies page

- Support for multi-chains(points) geometries
- Several technologies (the same cycle type) in the same operation, if needed
- Sorting of chains(points)
- Preview of several technologies
- Preview of geometries by one click
- Status of geometry with technology compatibility $\triangle \mathbb{A}$!

Machining \＆Probe operations intermixed

－Machining operations and Probe operations are intermixed in the CAM manger
－Machining operations and Probe operations can use the same geometries
－When the solid model is changed，both the machining and probe operations can be automatically synchronized to the change

$\square \square$ Operations
（H）Setup
局UTMS
（1．．．（7）MAC 1 （1－Position）
圆 MACHINE＿CTRL（1）冨 UTBS
（7）MAC 3 （2－Position）
田 \square 気 F_{l} contour 1 ．．．T1（2）
－－．．．（6）MAC 3 （1－Position）
回 断 MACHINE＿CTRL＿1（3）
－冒』 UTMS
E… MAC 1（1－Position）
1．\square nis 4 Sz＿drill ．．．T3（4）
（1）MAC 3 （2－Position）
－\square 風 F＿contour 1＿1 ．．．T1（5）
－．．．（7）MAC 3 （1－Position）
－粒 MACHINE＿CTRL＿2（6）
－（9）MAC 3 （3－Position）
田 \square（fin $F_{\text {＿}}$ contour 2 ．．．T2（7）

